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Impulsively started flow around a circular cylinder at various Reynolds numbers is 
studied by a deterministic hybrid vortex method. The key feature of the method 
consists in solving the viscous vorticity equation by interlacing a finite-difference 
method for diffusion and a vortex-in-cell method for convection. The vorticity is 
updated along the surface of the cylinder to satisfy the no-slip condition. The present 
method is basically different from previous applications of vortex methods, which 
are primarily in the context of random vortex algorithms. The Reynolds numbers of 
the flows under investigation range from 300 to lo6. Numerical results are compared 
with analytical solutions at  small times, and compared with finite-difference 
solutions and flow visualization results at relatively long times. Satisfactory 
agreement is found in the evolutions of the separation angles, wake lengths, surface 
pressure and drag coefficients, streamline patterns, and some velocities on the axis of 
symmetry behind the circular cylinder. The present hybrid vortex method is highly 
stable and suffers from little numerical diffusivity, yielding convincing numerical 
results for unsteady vortical flows a t  moderately high Reynolds numbers. 

1. Introduction 
There has been a continuing interest in capturing complex structures of flows 

around an impulsively started circular cylinder. Considerable effort has been directed 
to finding analytical solutions (see e.g. Wang 1967 ; Collins & Dennis 1973a; and Bar- 
Lev & Yang 1975) and accurate finite-difference solutions (see e.g. Thoman & 
Szewczyk 1969; Collins & Dennis 19733; Ta Phuoc LOC 1980 among others). 
However, all the previously known analytical solutions are only valid at very small 
times, while finite-difference methods often suffer from numerical instability or/and 
numerical diffusivity . Therefore for flows at high Reynolds numbers most traditional 
numerical methods may not be adequate for simulation, especially in long-time 
calculations. 

To overcome the numerical difficulties, heuristic vortex methods using random 
walks for modelling viscous diffusion and an inviscid vortex method for handling 
convection were proposed by Chorin (1973, 1978) in the study of slightly viscous 
flows. The methods have thereafter received much attention in the simulation of 
unsteady vortical flows, especially at  high Reynolds numbers ; see, for example, 
Cheer (1983, 1989), Ghoniem, Chorin & Oppenheim (1982), Sethian (1984), Tiemroth 
(1986) and Smith & Stansby (1988). In the authors’ opinion, although the random 
vortex method may have great value in simulating fully developed turbulent flows, 
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FIGURE 1 .  Schematic of the physical problem. 

it is not very satisfactory for use in studying problems of transition and stability. 
Typically, one has to resort to smoothing techniques to obtain good quantitative 
agreement between computed results and analytical or finite-difference results in 
employing a random approach. We refer to Leonard (1980, 1985) and Sarpkaya 
(1989) for a detailed review of computational methods with vortices for viscous and 
non-viscous flows. 

Motivated by the above observations, we present in this article a deterministic 
vortex algorithm without using random walks to study the impulsively started flow 
around a circular cylinder, which is shown to be highly stable during a long period 
of calculation. Roughly speaking, the method is of fractional-step type : diffusion is 
solved by finite difference and convection is solved by a vortex-in-cell method. The 
present method avoids therefore the use of random walks and difficulties followed 
from it whilst remaining highly stable and practically free from the problem of 
numerical diffusivity. However, the vortex-in-cell procedure requires a mesh in the 
computational domain. Following Smith & Stansby (1988) we adopt a single, radially 
expanding polar mesh, the inner side of which coincides with the surface of the 
cylinder along which the vorticity is updated to satisfy the no-slip condition. The 
mesh is also used in the present study to solve the diffusion equation in order to take 
into account the effect of viscous diffusion. 

The flow around an impulsively started circular cylinder (cf. figure 1) is known to 
become eventually three-dimensional when the Reynolds number is increased above 
about 200 (cf. Tritton 1988, p. 30). However, careful flow visualization reveals that 
the flow in the early stage of development in the (laminar) wake region is nearly two- 
dimensional ; the typical phenomena include a gross change of wake region and the 
formation of primary and secondary vortices. The formation of secondary vortices is 
of special interest ; their appearance may soon affect the flow structure and other flow 
properties. As shown in figure 2, a single secondary vortex may result from a bulge 
phenomenon, and form an isolated eddy, while there may also be secondary vortices 
forming the a- or /?-(forewake) phenomenon as classified by Bouard & Coutanceau 
(1980). This study concerns flows at moderately high Reynolds numbers in the range 
from 300 to lo6. Numerical results are presented for time variations of the separation 
angles, wake lengths, surface pressure and vorticity distributions, drag coefficients, 
streamline patterns and some velocities on the symmetric axis behind the cylinder. 
Previous numerical results show reasonable agreement with analytical solutions a t  
small times and with flow visualization experiments at relatively long times. These 
may serve as a check of validity of the present hybrid vortex method. The analytical 
solution used for comparison is that of Collins & Dennis ( 1 9 7 3 ~ ) ;  finite-difference 
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FIGURE 2. Flow patterns near the surface of the cylinder: (a) bulge phenomenon, ( b )  isolated 
secondary vortex, (c) a-phenomenon, ( d )  8-phenomenon. 

solutions for this purpose are taken from Ta Phuoc LOC (1980) and Ta Phuoc LOC & 
Bouard (1985), while the work of Bouard & Coutanceau (1980) serves as an 
experimental check. All the comparisons show generally close agreement ; somewhat 
different results are, however, observed at relatively high Reynolds numbers. This 
discrepancy with experimental results occurs earlier for flows at  higher Reynolds 
numbers for which the real flow hardly remains two-dimensional and becomes 
turbulent eventually. The discrepancy with the finite-difference solutions may be due 
to the numerical diffusivity associated with the finite-difference method, the effect of 
which increases with time. Nevertheless, we observe that there is a consistent trend 
that the bulge phenomenon is typical prior to the formation of a substantial isolated 
secondary vortex. The a-phenomenon is typically observed at  high Reynolds 
numbers, and the /?-phenomenon usually appears in the early phase of flow 
establishment, also at high Reynolds numbers. These can be seen from both the 
streamline patterns and the vorticity distribution over the surface of the circular 
cylinder. 

2. Basic equations 
We follow the formulation of the problem described by Smith & Stansby (1988). 

Consider a fluid of density p and constant kinematic viscosity v. The flow past a 
circular cylinder is governed by the NavierStokes and the continuity equations. 
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Some flow parameters are shown in figure 1. Let the reference length and velocity be 
the cylinder radius (a) and the speed of the distant flow ( U )  respectively. In 
dimensionless form, these equations may be written 

aupt + ( u - V )  u = -VP+ 2/Re V2u, 

v - u  = 0, 

where u denotes the velocity and P the pressure, and Re = 2Ua/v is the Reynolds 
number. The dimensional velocity u*, time t* and pressure P* are given by 

u* = Uu, t* = at/U,  P* = PUP. (3) 

For the present study, it is convenient to work with a stream function-vorticity 
formulation. By introducing an appropriate stream function and the vorticity 
function o = V x u,  we may recast equations (1) and ( 2 )  as 

V2$ = - w  (4) 

and (5) 

where o = wk. Refer the motion to a polar coordinate system ( r , 8 ) :  the cylinder 
surface is at r = 1 and the coordinate ( 1 , O )  coincides with the front stagnation point 
of the corresponding potential flow. 

Let t = 0 define the start of the motion, the initial condition a t  t = O +  consists of 
the potential flow and a vorticity sheet at  the cylinder surface. The boundary 
conditions for (4) are that, for t > 0, 

aw/at + (u - V) w = 2/Re V2w, 

$ = 0  for r = l ,  

- a ~ / a r + s i n 6  as r + m ,  

while the boundary conditions for (5) are that, for t > 0, 

u * e , = O  for r =  1, (7a)  

w + O  as r+m.  (7 b)  

The velocity u is related to the stream function 9 through 

u = er/r  a$/a8 - e, a+/ar, (8) 

where e, and e, are the unit vectors along the radial and azimuthal directions 
respectively. 

Let D* denote the drag exerted on the cylinder per unit length. The drag coefficient 
is defined by C, = D*/pUa and can also be written as C, = C,, + C,, where C,, is 
due to pressure while C,, is due to friction. Let Po and wo denote the surface pressure 
and the surface vorticity respectively. The drag coefficient is then given by 

C , = 2  (9) 

The surface pressure Po will be obtained, for each 8, by integrating the momentum 
equation radially from infinity to the cylinder surface. Prescribing the value of P to 
be 0 at infinity, we have 
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3. The hybrid vortex method 
The present vortex method for incompressible viscous flow can be summarized as 

follows. The vorticity field is approximated by a sum of ‘blob’ functions - called 
vortex blobs or simply vortices. Each vortex evolves in a Lagrangian manner, 
carrying with itself a circulation determined from the vorticity. The vorticity is 
obtained by solving the vorticity diffusion equation on a grid by finite difference. The 
circulations are then redistributed and converted back to the vorticity on the grid, 
which is thus updated. 

At  the beginning of each time step there are only vortices centred at mesh points. 
Therefore, we first approximate the vorticity field by 

L 

4, I) = E qf#-q, (11) 

where L is the number of vortices (or mesh points) andfi(r) is the blob function. Z-‘, 
and rj are respectively the circulation and position associated with the j t h  vortex 
blob. In practice, the functionf3(r) is conveniently taken to be an indicator function 
so that the vorticity is constant over the chosen indicator set, outside ~ h i c h  the blob 
function is zero. Highly accurate blob functions may be available in the form of 
combinations of some elementary functions; see, for example, Hald (1979), Beale & 
Majda (1985). 

Next we describe the polar coordinate system (r’, 0)  adopted.by Smith & Stansby 
in their work on random vortex contents. This was introduced for the solution of the 
Poisson equation (4) and for the creation of vorticity along the cylinder surface. For 
the present purpose, the coordinate system is also used to solve the vorticity diffusion 
equation in order to take into account the effect of viscous diffusion. In terms of the 
polar coordinates (r’, 8)  the Poisson equation (4) may be written 

a2$/aB2 +a(r‘) a2$/ar‘2 + b(r‘) a$/W = -w2, (12) 
where a(r’) = ( r  dr’/dr)2, b(r’) = rdr’/dr +r2 d2r’/drZ, (13a, b)  

r = c(r’) = B(eAr‘- 1 ) +  1. ( 1 3 4  

3-1 

For each time increment, (12) is solved on a mesh with a uniform mesh size in the 
coordinate system (r’, B) ,  defined over an annular region outside the cylinder surface 
(1 < r < ro).  Fine resolution is required near the surface of the cylinder. The 
constants A , B  in ( 1 3 4  are fixed by the radial mesh spacing at the cylinder surface, 
and by the value of the outer radius (To). The value of ro must be sufficiently large 
for (7 b) to be an adequate approximation and for all the vortices to be contained 
within the mesh. 

Denote by (i, j) the node of the mesh ; r’ = j and B = iAB (A0 = 2x /p ,  0 < j < q- 1 ) .  
Let @(i,j) be the nodal value of the stream function at (i,j). In a computation, (12) 
is solved by central finite difference in r’ with the help of Fourier collocation for the 
second derivative in 8. This yields a set of p tridiagonal equations in r‘, which can 
be solved efficiently by Gaussian elimination. Once (12)  is solved, the stream function 
is used to update the vorticity on the cylinder surface so that the no-slip condition 
is satisfied. Notice that along the cylinder surface, (12) reduces to 

Imagine that the stream function can be extended across the cylinder surface to 
possess meaningful values $(i, - 1). Then at least to a first-order approximation we 
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require @(i, - 1) = @(i, 1) so that the tangential velocity along the cylinder surface 
is zero. Applying the central finite difference to (12) then yields the surface vorticity 

(15) w ( i ,  0) = - 2 4 0 )  @(i, 1).  

The value of w ( i ,  0) in (14) can be evaluated accurately by interpolating the stream 
function using three or more radial mesh values near to the surface of the cylinder, 
followed by differentiation. With the solution of (12) and the surface vorticity w( i ,  0) 
in (15), the next step is to solve the diffusion equation on the grid by a finite- 
difference method. 

awlat  = 2/Re V2w. 
From the solution we construct the circulations to be convected by the vortices on 
the grid. Let A ,  be the cell determined by (i-&j), (i+$,j) ,  (i,j-$) and (i,j+$). Each 
A,, corresponds to an indicator set in the original r-space. The circulation associated 
with the vortex a t  (i,j) is then determined approximately by 

The formula is obtained by applying the midpoint rule for evaluating, in the (r', 0)- 
plane, the integral of the vorticity over the area corresponding to A,. The vortex 
carrying r(i,j) is convected to a new location with the velocity determined from (8). 
The circulation T(i, j) is then redistributed between the four corner nodes of the cell 
in which the vortex is contained according to the area-weighting scheme suggested 
by Christiansen (1973). The reassignment of circulations completes a cycle of 
computation. The vortices moving away from the grid points are then discarded, 
while a new set of vortices are regenerated on the grid. Recall that the conversion of 
circulation into vorticity, and vice versa, is made through (17). The present hybrid 
vortex method therefore, for each time increment, consists of the following solution 
steps : 

(i) Equation (12) for the stream function is solved on the grid ; the solution is used 
to update the vorticity along the cylinder surface to  satisfy the no-slip condition. 

(ii) Equation (16) is solved on the ;grid by a finite-difference method; the 
circulation associated with each vortex on the grid is then evaluated according to 

(iii) Each vortex on the grid along with the associated circulation is convected 
with the velocity determined by (8) using the values of the stream function obtained 
in (i). 

(iv) Redistribute all the circulations; add at  each grid point the assigned 
circulations and convert the result into vorticity, again, according to  (17).  The 
current vortices are discarded while a new set of vortices are regenerated on the grid. 
Go back to (i). 

The method described above is obviously of fractional-step type. The time accuracy 
can be improved by adopting a midpoint rule for evaluating the velocities of the 
vortices on the grid. One way of achieving this is to calculate the velocities using the 
average of the current vorticity and a predicted vorticity (both on the grid) a t  the 
next time step. This modified procedure is conceived to have second-order accuracy 
in time, and is used in the computations in the present study. Step (ii) takes care of 
the effect of diffusion while (iii) takes care of the convection. In the present approach 
vortices on the cylinder surface are not convected into the flow, while the diffusion 
of vorticity is achieved through solving the diffusion equation. The method is 
therefore completely deterministic, and is basically different from those using 

(17). 
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FIQURE 3. Time variation of the separation angle. Symbols are data from Collins & Dennis 
(1973a): 0 ,  Re = 1000 and 0, lo5. 
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FIQUI-GE 4. Time variation of the wake length : 0 ,  Re = lo00 from Ta Phuoc LOC (1980) ; 
0, Re = 3000; ., Re = 9500 from Ta Phuoc & Bouard (1985). 

random walks to simulate the effect of viscous diffusion. The forces and flow patterns 
obtained by the present method are very regular and no smoothing technique for 
obtaining time or spatial averages is necessary. Nevertheless, the manner in which 
the vortices are convected and the circulations are redistributed is exactly the same 
as in a vortex-in-cell method for inviscid flows. Note also that the area-weighting 
scheme which locally smooths the vorticity field is indeed a mild source of numerical 
diffusion, even though its effect becomes smaller as the meshing is finer. It is 
therefore in this sense that we do not claim that the method, a t  least in its present 
form, is suitable for simulating turbulent flows unless there is enough grid resolution. 
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FIGURE 5. Comparison of radial velocities on the symmetric axis behind the cylinder for (a) 
Re = 3000; 0,  t = 1; 0, 2; ., 3 ;  0 ,  4, A, 5 ;  ( b )  Re = 9500: 0 ,  t = 1.2; 0, 2.0; ., 2.8; 0,  3.6; 
A, 4.0. Discrete data are taken from Bouard & Coutanceau (1980). 

To ensure the validity of the present study, the flow patterns are restricted only to 
initial stages of flow establishment (especially a t  high Reynolds numbers) a t  which 
the real flow is most likely to be laminar. 

4. Numerical results and discussion 
The domain of calculations is limited to the upper half-plane because of the flow 

symmetry in the early stages of development. The flows considered are of Reynolds 
numbers Re = 300, 550, lo3, 3000, 9500, 20000, lo5 and los. Numerical results are 
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FIQURE 6. Time variation of the surface pressure for (a) Re = 3000, ( b )  lo5. 

presented for time variations of the separation angles (figure 3), wake lengths (figure 
4), velocities on the axis of symmetry in the near wake (figure 5) ,  surface pressures 
(figure 6), drag coefficients (figure 7), surface vorticity distributions (figure 8) and 
streamline patterns (figures 9, 10, 14-17). In figures 11-13 and 18, some typical 
streamline patterns from the computed results and the results of flow visualization 
experiments are compared. The basic grid is p x q = 128 x 200; the value of ro is 25 
in all cases while the surface radial mesh spacing is taken to be the standard deviation 
of diffusion over one time step for each Reynolds number. The grid dependence has 
been checked by changing the value of ro and by multiplying the standard deviation 
by a factor close to one ; no substantial difference was found. Nevertheless, the effects 
of the time step At and the azimuthal size A0 were analysed in particular for 

9 FLM 233 
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Re = 3000 and 9500 ; these cases have been carefully investigated by flow 
visualization techniques. Comparisons presented below show that the grid 
p x q = 128 x 200 with the time step At = 0.02 for all the cases under consideration is 
satisfactory. All the calculations are performed on a Convex Cl/XP Machine; each 
cycle from (i) to (iv) takes nearly 1.25 CPU seconds. 

4.1. Re = 300, 550, 1000, 3000 
Figure 3 shows the time evolution of the separation angles (OS). Flow separation 
occurs earlier as the Reynolds number is increased. For each Reynolds number, the 
separation angle decreases rapidly and tends toward a stationary value, which is, 
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FIQURE 7.  Time evolution of the drag coefficient: (u, b )  at various Reynolds numbers; (c, d )  
with different timesteps and grids for (c) Re = 3000 and ( d )  9500. 

however, greater than 90' up to t = 6. The result for Re = 1000 shows a very close 
agreement with that of Collins & Dennis ( 1 9 7 3 ~ )  up to t = 1.2. Figure 4 shows that 
the wake lengths (L = L*/a) for Re = 1000 and 3000 increase almost linearly since 
their appearance. (L* denotes the dimensional wake length.) They are found to be in 
good agreement with the numerical results of Ta Phuoc LOC (1980). Figure 5(a) 
shows a comparison of some radial velocities (u) on the symmetric axis behind the 
cylinder with those obtained by Bouard & Coutanceau (1980) for Re = 3000. The 
agreement is quite good up to t = 3. It is seen that the recirculation is strongest in 
the middle wake along the axis of symmetry. 

9-2 
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FIGURE 8. Time variation of the surface vorticity for (a) Re = 3000, ( b )  lo5. 
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The surface pressure (Po) presented in figure 6 ( a )  looks much like that at Re = 550 
in Collins & Dennis (1973b) a t  relatively small times. It is seen that the pressure 
recovers with more difficulty a t  lower Reynolds numbers; the surface pressure 
distribution has the tendency to be stationary as time is increasing. This tendency 
is also observed in the surface vorticity (w,,) distribution, and seems to be stronger as 
the Reynolds number is decreased. 

These facts indicate that the drag force may also tend to be stationary. This is 
indeed the case, as reflected by the drag coefficients (C,) shown in figure 7 ( a ) .  The 
drag coefficient typically falls rapidly in the beginning to a minimal value, then 
increases smoothly to a mildly changing value. It is seen that a t  t = 6 the drag 
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FIGURE 9. Instantaneous streamline patterns for Re = lo00 at various times: 
(a) t = 1, (a) 2, (4 3, (4 6. 

I 
FIQURE l O ( u 4 ) .  Instantaneous streamline patterns for Re = 3000 at various times: 

(a) t = 2, ( b )  3, (c) 4, (4 6. 

coefficients are close to one; a lower value corresponds to a higher Reynolds number. 
This situation appears to be consistent with the stationary drag curve for a cylinder 
in the range under consideration ; see e.g. Panton (1984, p. 387). The effects of A0 and 
the time step At are analysed in figure 7 (c). It is found that the drag force is almost 
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FIQURE 11.  Comparison of the streamline patterns for Re = 300 at t = 5:  (a) the present 
method, ( b )  flow visualization by Bouard t Coutanceau (1980). 

insensitive to either of them. The computed drag curves coincide very well with each 
other during the whole period of calculation (even a t  small times). In other words, 
At = 0.02 is an adequate time step for resolving the initial flow with the present 
hybrid vortex method along with (9) and (10) for the drag coefficients. 

These facts imply that the vorticity distribution near and along the cylinder 
surface does not vary significantly with further decreasing A0 or At. Figure 8(a )  
shows time variation of the surface vorticity distribution for Re = 3000. The 
variation is generally mild; however, after about t = 2.3 the surface vorticity changes 
its sign three times along the cylinder surface, most likely corresponding to the 
formation of a secondary vortex. Indeed, it is observed that the bulge phenomenon 
is typical prior to the formation of an isolated secondary vortex; see e.g. figures 
9(b, c )  and 10(a, b ) .  The secondary vortex, being contained within the primary 
vortex, is near to  the cylinder surface, and does not interact with the exte.-,ial flow. 
This is consistent with the previous observations of Honji & Taneda (1969) and Ta 
Phuoc LOC & Bouard (1985). From figure lO(c), we observe one additional secondary 
vortex which is not next to the cylinder surface and thus not predictable from the 
surface vorticity. The two vortices can be thought to form the a-phenomenon. 
Figures 11 and 12 show that the streamline patterns for Re = 300 and 550 a t  t = 5 
compare very well with the flow visualization results of Bouard & Coutanceau (1980). 
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FIQURE 12. Comparison of the streamline patterns for Re = 550 at t = 5 :  (a) present method, 
( b )  flow visualization by Bouard & Coutanceau (1980). 

Furthermore, in figure 13, the grid dependence is checked against the time step At 
and the azimuthal size A0 for Re = 3000 with ( p , q )  = (128,200), At = 0.02 and 
(p ,q)  = (256,200), At = 0.01. In  the same figure, comparisons are made of the 
streamline patterns between the present results and the finite-difference and flow 
visualization results of Ta Phuoc LOC & Bouard (1985). The grid 128 x 200 with 
At = 0.02 is satisfactory in the comparisons of global streamline patterns, though the 
secondary vortices are slightly larger for the finer grid. 

4.2. Re = 9500, 20000, lo5, los 
Figure 3 shows that the separation angles decrease eventaully to values somewhat 
below 90'; the values differ little from each other. The result for Re = lo5 is found to 
be in close agreement with that of Collins & Dennis (1973a). Figures 4 and 5 ( b )  (for 
Re = 9500) show comparisons of the wake length and some radial velocities on the 
axis of symmetry behind the cylinder. The general agreement is quite good, although 
the discrepancy with the experimental results of Bouard & Coutanceau (1980) 
increases from t = 2.8. Figures 6(b)  and 8 ( b )  (for Re = lo5) indicate that in these 
flows, the surface pressure and vorticity change violently over the cylinder surface ; 
two or more vortices near the surface are therefore likely. It is noted that for Re = lo5 
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FIQURE 13. Comparison of the streamline patterns for Re = 3000 at t = 5 :  (a) present method, 
p x q = 128 x 200, At = 0.025; ( b )  present method, p x q = 256 x 200, At = 0.01 ; (c) flow visual- 
ization by Ta Phuoc LOC & Bouard (1985); ( d )  finite-difference method by Ta Phuoc LOC & 
Bouard (1985). 

the vorticity may exceed 1000 while for Re = lo6 the value may even exceed 3500. 
In these cases, we observe again that the bulge phenomenon is typical prior to the 
formation of an isolated secondary vortex. Furthermore, it is found that the a- and 
/3-phenomena are typical in the early phases of flow establishment. The a- 
phenomenon can be seen from, for example, figures 14(c, d ) ,  15(d), 16(d), while the 
/3-phenomenon can be seen from, for example, figures 14 (a,  b ) ,  15 (a,  b ) ,  16 (u-c), and 
17(u-d). In all the cases, the wake length increases linearly initially and then 
increases with a faster rate. The faster rate corresponds to the forewake (p- 
phenomenon) soon developing into the main wake (cf. figure 4). 

Figure 7 (b )  shows time histories of the drag coefficients. The typical pattern of the 
drag curves is basically the same as that at the lower Reynolds numbers except that 
for Re = lo6. It is interesting that the drag coefficient for Re = lo6 is relatively quite 
small for an initial portion of time; the coefficient may even be nearly zero. This may 
possibly correspond to the experimental result that the (stationary) drag coefficient 
drops rapidly at Re w 3 x lo5 (cf. Tritton 1988, p. 34). The effects of the size A0 and 
the time step At on the drag coefficient are analysed in figure 7 ( d )  for Re = 9500. It 
is found again that the computed drag curves coincide very well with each other. 
These observations more or less confirm that the present method does indeed provide 
some useful and reliable information at  high Reynolds numbers. Owing to the rapid 
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FIQURE 14. Instantaneous streamline patterns for Re = 9500 at various times: 
(a) t = 2.0, ( b )  2.4, (c) 3.6, ( d )  4.8. 

I I 

FIGURE 15. Instantaneous streamline patterns for Re = 20000 at various times: 
(a) t = 2.0, (a) 2.4, (c) 3.2, ( d )  4.4. 

change of the flow at high Reynolds numbers, it should not be a surprise that there 
is an increasing discrepancy between the present results and previous numerical 
results of Ta Phuoc LOC & Bouard (1985) and experimental results of Bouard & 
Coutanceau (1980). Ta Phuoc LOC & Bouard used steady-state solutions of low- 
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FIGURE IS. Instantaneous streamline patterns for Re = lo5 a t  various times: 
( a )  t = 2.0, ( b )  2.8, (c) 3.6, ( d )  4.4. 

FIGURE 17. Instantaneous streamline patterns for Re = lo6 a t  various times: 
( a )  t = 2.4, ( b )  3.2, (c) 3.6, ( d )  4.4. 

Reynolds-number flows as initial conditions to obtain good agreement between the 
numerical and flow visualization experiments. But there is also the possibility that 
this discrepancy is due to the finite difference’s suffering from numerical diffusivity 
or that  the real flow hardly remains two-dimensional and becomes eventually 
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I I I I 

FIGURE 18. Comparison of the streamline patterns for Re = 9500 at t = 4.0: (a) present method, 
p x q = 128 x 200, At = 0.02; (a) present method, p x q = 256 x 200, At = 0.01 ; (c) flow visualization 
by Ta Phuoc LOC & Bouard (1985) ; (d) finite-difference method by Ta Phuoc LOC & Bouard (1985). 

turbulent at high Reynolds numbers. However, this should be remedied in three- 
dimensional calculations. Nevertheless, we have extended the present work to flows 
of Reynolds numbers up to los, and still obtained very stable numerical results, 
which indicates that for the present method, two-dimensional disturbances do not 
lead to divergence of solutions over a long period of calculation. In figure 18, the grid 
dependence is checked against the time step At and the azimuthal size A0 for 
Re = 9500 with (p,q) = (128,200), At = 0.02 and ( p , q )  = (256,200), At = 0.01. In the 
same figure, comparisons are also made of between the streamline patterns from the 
present results and the finite-difference and flow visualization results of Ta Phuoc 
LOC & Bouard (1985). The grid 128 x 200 with At = 0.02 is found to be satisfactory 
in comparisons of the global streamline patterns. However, the calculation based on 
the finer grid indicates clearly a small but visible tertiary vortex next to the cylinder 
surface ; this tertiary vortex is not resolved on the coarser grid. 

5. Concluding remarks 
We have shown how a hybrid vortex algorithm can be implemented in a 

deterministic way; the method is highly stable and reliable even for flows a t  
moderately high Reynolds numbers. The numerical results compare very well with 
previous analytic, finite-difference and experimental results. The method can also be 
readily applied to investigate various other physical problems. Some research 
subjects related to the present study, including the effect of rotation and flow around 
geometrically non-smooth surfaces, are currently under investigation ; the results 
will be reported elsewhere. Finally, it is noted that the authors were informed by one 
of the referees that Graham (1988) has also taken up another (different) deterministic 
approach to the vortex (particle) method. Graham’s work contains a brief discussion 
of the conservation of the moments of the vorticity field. It is thus helpful to include 
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this reference here although a comparative study between the two methods is 
apparently unavailable at present. 

The authors thank all the referees for their helpful comments. This work is 
partially supported by the National Science Council of R.O.C. under Contract No. 
NSC79-0401-E002-25. 
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